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Abstract--As the vanous concepts and results experienced in gas-liqmd two-phase flows cannot readily 
be translated to liqutd-liquid systems, an attempt ~s made to form a bas~s for constructing a general 
two-fired flow pattern map. The departure from a steady stratified configuratton to other bounding flow 
patterns is analysed m v~ew of the relatmnships between the mstability critenon and the conditions for 
reality of characteristics, which evolve from exploring the stability and weU-posedness of the governing 
equatmns. The transmonal boundaries between the other flow patterns encountered in liquid-liquid 
systems are obtained based on mechamst~c models. A parametric study made for wide ranges of geometry 
and physical propertaes, as encountered m hqutd-hquid systems, ~s also included. Comparisons of the 
proposed transiuonal cntena with (hmlted) available data m hquid-liquid systems show reasonable 
agreement. The convergence of the general criteria to the extremes of gas-liquid data, on the one hand, 
and the data of h~ghly vtscous core flows, on the other hand, is sattsfactory. 
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1. I N T R O D U C T I O N  

Flows of mixtures of immiscible fluids are encountered frequently in the design of a variety of 
industrial processes and equipments. Gas-liquid two-phase flow represents a very particular 
"extreme" which has evoked extensive interest in the general area of multiphase flow in the last 
few decades. The resulting research into numerous aspects of various gas-liquid flows has 
contributed to a wide knowledge and understanding compared with that of other two-phase flows 
such as l iquid- l iquid mixtures. However, this in no way implies a lack of interest in the area of 
liquid-liquid flows. Depending on the flow conditions, liquid-liquid mixtures form various flow 
patterns of interest, some of which have been identified experimentally (Charles et al. 1961; Russell 
et al. 1959). 

In principle, the behaviour of liquid-liquid two-phase flow is determined by the physical 
properties of the two layers, the system geometry and the associated flow pattern, as in gas-liquid 
mixtures. However, as has been shown recently by the authors (Brauner & Moalem Maron 
1989, 1992; Brauner 1991), the various concepts and results experienced in gas-liquid two-phase 
flows cannot be readily translated to liquid-liquid flow predictions. Thus, with the lack of direct 
focus on the two-phase mechanisms associated with wide ranges of physical properties (density, 
viscosity and surface tension of the two fluids), the understanding of liquid-liquid two-phase flows 
remains inadequate. 

A thorough analysis for each of the flow patterns is necessary in view of the different spatial 
distributions of the phases, which in turn determine the transport rates (momentum, heat and 
mass). Clearly, each of the flow patterns has its own particular practical interest. For instance, one 
of the aspects that attracts most attention is the reduction of pressure losses and power 
requirements in horizontal pipelines by the addition of a less viscous, immiscible liquid, as a second 
phase. The separate analyses of stratified (Brauner & Moalem Maron 1989) annular or highly 
viscous core flows (Moalem Maron et al. 1990; Brauner 1991) for wide ranges of tube size, viscosity 
and density ratios, show the regions with the best operational conditions for each flow pattern and 
their advantages. Moreover, the analyses of the various flow patterns shed some light on the 
possible mechanisms of transitions to others bounding flow patterns. 

The present study proceeds along the following lines: analysing the various transitional criteria 
and parametrically studying the effects of the physical properties of the two fluids for wide ranges 
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of density and viscosity ratios, which are particularly important in liquid-liquid systems. The 
integration of the various transitional boundaries yields flow pattern maps for liquid-liquid systems 
which define the region of existence of the various patterns. 

2. FLOW PATTERN TRANSITION CRITERIA 

Referring to horizontal or slightly inclined flows, the simultaneous introduction of two 
immiscible fluids having a density differential is considered. For some limited range of relatively 
low fluid flow rates, the gravity forces due to the density difference are dominant and stratified flow 
is the natural resulting pattern. 

2.1. Stratified f low boundaries 

The transitions from smooth steady stratified flow to other (annular or intermittent) flow 
patterns in gas-liquid systems, have been commonly tackled by resorting to stability analyses (e.g. 
Lin & Hanratty 1986; Hanratty 1987), with some reference to the conditions for obtaining real 
characteristics (Banerjee 1985). In the accompanying paper, and as a prior phase to this work, the 
authors present a comprehensive study for the general liquid-liquid system on the relationship 
between stability criteria, and those for obtaining real characteristics, by exploring the well-posed- 
ness of the initial value hyperbolic set of the governing equations (Brauner & Moalem Maron 1992). 

Utilizing the average one-dimensional two-fluids transient formulation, the resulting continuity 
equations for the two layers and combined momentum equations (figure 1) are: 

0 +__o 
0t  (pbAb) 0X (pbAbUb) = 0, [la] 

~ (paA.) O + -~x (paAau') = 0 [lb] 

and 

U b Ual  dA b Oh 
pb(1 -?b)~-~b-I-p.(l-I- V.) ~_] --~- ~-~ 

with 

and 
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+ (Pb -- P~)g COS/~ ~X -t Ox 

(P,b -- P,.) = d ~x2 [2b] 
a-xr -O--x t r [  1 + \Oxj(Oh~21½ ' 

where ua, Ub and h are the instantaneous local values of the phase velocities and lower layer depth, 
A and S denote the flow cross-section and wetted perimeter and Va and Vb are the shape factors 
which account for a velocity distribution in the two layers. The modelling of the various shear 
stresses terms in [2a] is detailed in Brauner & Moalem Maron (1992). Note that, "adjustable 
definitions" for the hydraulic diameters of the two phases (according to the relative velocity 
between the phases) has been adopted. 

A temporal stability analysis carried out on the linearized form of[l, 2] yields the dispersion relation 

aC 2 - 2(b~ + ib2)C + d~ + id2 = 0; C - a~/k, [3a] 

and 
1 1 

C~ ~ = - (b~ + ib2) +_ - [(b~ + ib2) 2 - a(d~ + id2)] ½, [3b] 
' a a 

--%Sb / 1 1 '~ Sa 
A f t =  Ab +z,S,{-~-+~-~|+z~--+(pb-p,)gk.% ~,/ A~ sin/~ [2a] 
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with 

and 

-• ' , dab a----pb + p a - ~ ;  J ib= ~ ,  

t t 

b2= kAb OUb Ab ~U. J' 

A~,, rn _~ d' = Pb'A-'bb rb "' b + Pa -'a Y'U2a-[(Pb-Pa)gC°sfl+~rk2] 
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Here, C represents the complex propagation velocity of the disturbance, k is the wave number and 
OAF.b/O(H, U., Ub) are Of~b/O(h, u., Ub) at steady conditions H, U., Ub. The neutral stability 
conditions are obtained by requiring the zero imaginary part for C, whereby [3a,b] yield: 

~ ;  OAFab ~ OAFab OAFab 
Crn_~d2 ~ Ub ~b ~U. O""~a ~'~ 

2b 2 = /I~, 63AF.b /i~, 6qAFab [4] 

and 

16Dgcosfl~-~b~V 2 --~--1 + ( y . - - l )  1 Uj_I 

[( ) ( )I}[ .,if, Cr.  ~ Cr. Co, - p . )  ÷ = o. [51 
+ ~ U ~  ~ - 1  +(yb--1) 1 - - 2 ~  -- Pb PbgCOSfl 

The non-dimensional form of [5] is 

1 - ~  - 1  + ( y , - 1 )  1 - 2  Fr[ 

+8~,FfCm )2 ( - 2 C ~ ] F ~ - ( I + ~ 2 W e b F ~ ) = O ,  [6] ~L~~-b-- 1 +(Yb--1) 1 VJ] 

with 
Fr[ = p" U~, F~ = Pb U2, = Pb F~ U. 

Ap Dg cos fl' Ap Og cos--------fl p. O 2' ¢ = U'-~ ' j~ = kD, 
dib , deb . Web= * . = a ' ¢ 2 W e . ,  *b= [7] pbDV~ Pb -~, ~b=d-~, 

where eb denotes the lower phase hold-up and Fr., Frb, We. and J~ represents the Froude, Weber 
and non-dimensional wave numbers, respectively. 

In parallel, the conditions under which the governing system [la-c] constitutes a well-posed 
initial value problem, thus possessing real characteristics, have been shown to be 

~bU2byb(Yb--l)+~aV2~y.(y.--1)--(YbUb+y.U.)2+~ab[(pb--p.)gcos[J+ak2]>~O. [8a] 

In its non-dimensional form [8a] reads 

~bYb(,b--l'(~)e+,.y.(y.--l'(~.)2$2--O'b~--eky.~.)2+Fr~2+We.bla>~O, [8hi 
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Figure 1 Schematic descnptmn of a stratified flow configuratmn 

w h e r e  

Fr.b=Pa___~bFrb, Weab=PbWeb, /Sb=l+pbA~a /3a__l_l_PaA~b, A; PaPb. [8C] 
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A. Ab 
The stability and well-posedness analyses were carried out around an assumed smooth stratified 
flow configuration. The solution for the fully-developed stratified flow (H, U., Ub) is detailed in 
Brauner & Moalem Maron (1989). The relation between the neutral stability conditions [4] and 
[5], the real characteristics condition [8] and the departure from the stratified flow configuration 
is shown in figures 2 and 3. 

Figure 2 shows typical trends of the variation in amplificauon with the wave number 
[C, = J ~ { C }  vs k) in terms of  (U~, Ub~) combinations as calculated by [4] and [5]. For a certain 
set of (Ua,, Ub,), as depicted by curve (a), there exists no wave number for which the amplification 
is positwe. Thus, for the entire range of k (or wavelengths), all disturbances are expected to decay. 
On the other hand, for other combinations of  (Ua,, Ub,), as in curve (c), a smooth mterfacial 
structure is maintained only for k > k, (or >l < 2,). For 0 ~< k ~< kn, or sufficiently long waves, where 
the destabilizing effect of surface tension becomes small, the disturbances are amplified and hence, 
a wavy interfacial structure develops. Depending on the (Ua,, Ub~) set, the range of amplified waves, 
0 < k < ko, may be reduced. For particular combinations of  ([/as, Ub,), as represented by curve (b), 
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the amplified range diminishes. In searching for all combinations of (Uas, Ub~) for which k n --~0, the 
"zero neutral stability" (ZNS) line in figure 3 is obtained. This boundary confines all possible 
smooth stratified flows. The locus of the curve itself represents the departure from the smooth 
stratified structure. For any operational set (U, ,  Ub~), outside the kn = 0 boundary, the linear 
stability analysis predicts exponential growth with time for a finite range of wave numbers, 
0 ~< k ~< kn. The growth of disturbances in this region may either be damped (due to non-linear 
effects) and thus end with "stable wavy" stratified flow, or may result in a different flow 
configuration (due to bridging, for instance). 

Also indicated on curve (c) of figure 2 is the minimum wave number, kr~, which ensures real 
characteristics. This is obtained by [8] for a given set of (Uas, Ub~). Thus, for all k < krc, an un- 
stable stratified flow is consistently predicted by both stability and well-posedness analyses. 
However, for k~ < k < kn, while the governing equations [la-c] are well-posed, they are still 
expected to develop a wavy structure (according to stability analysis). As is shown by the authors 
elsewhere (Brauner & Moalem Maron 1992), the value of krc is always within the amplified range, 
k~: ~< k n . 

In parallel with the physical interpretations of the ZNS boundary given above, defined by k, = 0, 
an analogue boundary is constructed by searching for all combinations of (U,s, Ubs) which yield 
real characteristics for k~ = 0 (by [8a,b]). The "zero real characteristics" (ZRC) boundary is 
included in figure 3 and is shown to fall away from the previous ZNS boundary, in the region where 
no stable smooth stratified flow is expected to exist. As demonstrated in figure 3, the ZRC boundary 
is composed of two branches; the upper one corresponds to Ub > U,, while along the side branch 
U, > Ub- The two branches approach one another in the region of high velocities of both phases, 
U, and Ub, where the difference in the two is just sufficient to balance the gravity term in [8a]. As 
these two branches get closer, a double solution is obtained (for either specified Uas or Ub~). Thus, 
at relatively high velocities, there exists a narrow range of operational conditions for which real 
characteristics are still ensured. The location of this region and its width depend mainly on the 
density differential. 

It is of interest to elucidate the non-monotonous behaviour of the ZNS boundary. Here too, 
multiple solutions are obtained for kn = 0 while searching for Uas at constant Ubs and vice versa. 
For instance, increasing U~ along U,*, the first solution S~ is obtained, beyond which an amplified 
wavy zone is predicted that extends to point $2. Up to point $2, laminar flow of phase b is 
maintained. At point $2, phase b becomes turbulent (Reb =Recr = 1500) and [3a,b] and [5] for 
turbulent phase b predict again stable smooth flow (all modes are damped by [3a,b] and no physical 
solution for kn/> 0 by [5]). For clarity, the transitional line from laminar to turbulent phase b is 
also indicated in figure 3. The transition from stable to unstable stratified flow, which takes place 
along the laminar/turbulent boundary is thus discontinuous. With a further increase in Ubs, another 
solution $3 for kn = 0 is now obtained with phase b turbulent. Note that, for low U~s = U's*, the 
laminar flow of phase b always remains stable, while the turbulent becomes unstable at point $4, 
whereby a single solution (for kn = 0) is obtained. 

Similarly, for constant U ~ -  2 cm/s, three transitions are obtained, one of which is again 
discontinuous due to the laminar/turbulent transition. However, at low U*,* - 0.3 cm/s, the various 
transitions are due to multiple solutions of [5] obtained for laminar flows in both phases. 

Also included in figure 3 is the locus of (U~, Ubs) which corresponds to a local minimum of the 
neutral stable wave number in the amplified zone (k~ > 0). Clearly, around the (kn)mm line, the range 
of amplified modes 0 < k < (k~)~, is relatively narrow and is continuously reduced as this line 
approaches the stable smooth boundary (around S~). When ( k ~ ) u = 0  the stable/unstable 
boundary is crossed. 

The general outcome of the ZNS and ZRC lines is to define three zones; the area below the ZNS 
boundary, is well-understood to be the stable smooth stratified zone. In the "buffer" zone between 
the two boundaries, though amplified interfacial waves exist, the equations which govern the 
variation of (h, u,, Ub) in space and time are still well-posed with respect to all unstable modes. 
Beyond the ZRC boundary the complex characteristics imply that the governing equation for the 
stratified flow configuration cannot accomodate the time and space variation associated with a 
certain range of amplified wave modes. Thus, while the ZNS boundary may represent a preliminary 
transition to a wavy interfacial structure, the ZRC boundary, which is well-advanced in the wavy 
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unstable region, represents an upper bound for the existence of a wavy stratified configuration, 
beyond which another flow pattern prevails. 

In view of the implications to flow pattern transitions associated with the ZNS and ZRC 
boundaries, it is of interest to demonstrate these boundaries for various liquid-liquid systems. As 
figure 3 relates to a particular system (P,/Pb = 0.834,/~a/#b -- 20), figures 4-7 summarize the effects 
of density and viscosity ratios, shape factors and conduit diameter. 

Figure 4 indicates that as the density differential decreases, the stable smooth stratified zone 
(confined by the ZNS line) is reduced, thus a stable smooth stratified flow pattern is maintained 
in a limited range of operational conditions (Ua,, Ub~) [figures 4(a,b)]. Similarly, as the viscosity 
ratio increases, the velocity gap between the phases tends to increase, leading to a more limited 
zone for stable smooth stratified flow [figures 4(b,c)]. In general, the range for well-posedness (as 
confined by the ZRC lines) is also reduced by either decreasing the density differential or increasing 
the viscosity gap. 

It is interesting to refer at this point to the effects of the shape factor, as demonstrated in figures 
4(a-c). As [Sa] indicates, for ?a, 7b > 1 additional stabilizing terms result. Thus, inclusion of the 
shape factors may extend the region of operational conditions for which real characteristics are 
obtained. A shape factor > 1 is more likely in laminar (viscous) layers. As in liquid-liquid system, 
the lighter phase is usually also the more viscous one (oil-water systems), the effect of ~a is 
demonstrated in figures 4(a-c). It is shown that for a given oil flow rate, U, ,  well-posedness is 
ensured at a higher water rate, Ub,, as the oil shape factor, y~, increases. Note that the effect of 
the oil shape factor, ya, is demonstrated with respect to the upper branch along which Ub > U~, 
whereas along the side branch, where U, > Ub, a shape factor of 1 may reasonably be assumed 
for the (high velocity) viscous phase as well. Inspection of [5] indicates that the inclusion of the 
shape factors in the stability analysis may contribute additional stabilizing terms (for C,~/U, > 0.5 
or C~/Ub > 0.5), in which case the range for stable smooth stratified flow is also extended. 

As the ZRC boundaries are interpreted as the upper limits for maintaining a stratified flow 
configuration, further illustrations of the effects of physical properties and system geometry on the 
ZRC boundaries are detailed in figures 5-7. Again, for liquid-liquid systems of greater density 
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Figure 4. The effect of the density differential and the viscosity ratio on the locations of the ZNS and 
ZRC boundaries. 
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Figure 5 The effect of the density differential on the ZRC Figure 6 The effect of the viscosity ratio on the ZRC 
boundary, boundary. 

difference, wider ranges of both oil and water flow rates may sustain a stratified flow pattern (figure 
5). Whereas, with an increasing viscosity gap, the departure from the stratified flow pattern occurs 
consistently at lower water ratios (the water rate is reduced for a given oil rate along the upper 
branch or the oil rate increases for a given water rate along the side branch). It is particularly 
interesting to note that for a given oil viscosity there exists an extremal oil rate for maintaining 
a stratified pattern, which is almost independent of the water rate. This extremal value (location 
of the side branch) increases with oil viscosity. On the other hand, for high-viscous oils, the analysis 
predicts that a certain oil flow rate exists for which the water rate required to cause departure from 
stratified flow is minimal (along the upper branch). This minimum water ratio decreases with oil 
viscosity. The above observations have practical implications with regard to high viscous core flow 
performance, as is discussed below. 

Figure 7 represents the effects of tube diameter on the range of the stratified flow configuration, 
whereby higher water and oil rates (along the upper and side branches, r~pectively) are required 
for transitions with increasing tube diameter. Clearly, the extended ranges of the operational rates 
(U, ,  Ub,) for maintaining a stratified pattern at higher diameters, adversely affect the possibility 
of other flow patterns developing. 

The construction of the complete stratified/non-stratified transitional boundary based on 
integrated considerations of stability and well-posedness are proposed and examined in section 3 
in view of the experimental data for various two-fluid systems. 

2.2. Annular flow boundaries 

In order to determine whether an annular pattern collapses into stratified or slug flows, the 
modelling of annular flow is required. Recently, Brauner (1990) presented a physical model for 
annular liquid-liquid systems (figure 8). The model encompasses within a common framework all 
possible flow situations of laminar-laminar, turbulent-turbulent and mixed flow regimes in the two 
phases for wide ranges of physical properties (viscosity and density), and yields the core phase 
diameter, Dc (or in situ hold-up, ca), and the corresponding pressure drop. For the common case 
of a laminar viscous oil core, with either a laminar or turbulent annular (water) phase, simple 

I J M F  1 8 / I - - I  
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F~gure 7. The effect of the tube diameter on the ZRC boundary 

explicit solutions for Dc have been obtained. For a laminar core-laminar annular layer, L-L (see 

~2 ~a = (l -- J~c2)(l -- O{w) "Jr" DcO{c) 

also Russell & Charles 1959), 

= l ~ ,  a ( 4 , ) 3 i  . 

where 
[o~,~ - -  ( l  - -  ~tw) ] [ct c - -  (1  - -  ~to)@] 

F(~b) = , G(~b) -- 
4,[~o + ~w-  l] [~o+ ~ -  l] 

and for a laminar core-turbulent annular layer, L-T, 
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Figure 8. Schematic description of an annular  flow configuration. 
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where 
O'046(#by2(PbyS~  s OS. Z' = 0.046 #b 1 (Re~)o s = Re~,  

mbw. [9cl Pc = Pa a¢ + Pb (1 -- ac), a¢ ---- ; Pw = Pb ~w "b Pa (1 -- aw), aw = A-'-~" ' 

Reds and Rebs are the superficial Reynolds numbers, B is an augmentation factor of the interfacial 
shear stress due to waviness, A¢, Aw, p¢ and Pw are the areas and equivalent densities of the core 
and annular wall phases due to entrainment of (1 - a¢) of phase b into the core and (1 - aw) of 
phase a into the wall phase. For pure core phase a and pure annular phase b, a¢ = aw = 1. 

A transition criterion is derived now by looking for the limiting situation of an annular 
configuration. In the range where stable annular flow has been observed, it has been found that 
Aw/A < 1, which corresponds to a relatively thin annular layer. Increasing the annular phase flow 
rate, Ub~, yields a thicker wavy annular layer. With a sufficiently thick annular layer, the growing 
interfacial waves may block the core space leading to the formation of oil slugs and bubbles. This 
mechanism of core disintegration evolves from the inherent Rayleigh instability associated with a 
moving cylindrical jet, well-known in reference to free-liquid jets. However, in annular flow, further 
complications due to the damping effects of the conduit wall on the eccentric core are to be 
accounted for. Instead, a rather realistic transitional criterion may be established by exploring the 
critical in situ hold-up, which generates favourable conditions for the growing interfacial waves to 
reach the core centre. 

A transition line to a slug pattern is established by searching for those (U~, U~) for which the 
annular model equations fulfil a prescribed criterion, such as either Dc ~-D/2 or A¢ ~-Aw ~-A/2. 
For the particular case of a viscous laminar core, either of the explicit expressions in [9a,b] are used, 
and when the requirement of Aw "" A/2 (13¢ = x/2/2) is used for instance (with B = 1), the criterion 
for the annular/slug transition reads: 

and 

Uw G(~)1½ G(~) 
/> 0 L-L; [lOa] 

z~ [ l'pw/v''~°~6(¢')',-1½ 6(¢) 
LgePb kV--bb: ~ J + F(~b) -~b~>0 L-T. [10b] 

In the absence of entrainment, ac = ~w = l, and [10a,b] reduce to 

1 /~b~ ~ + 1 >t0 L-L  [lla] 

and 

X~b -~b + 1 i> 0 L-T. [1 l b] 

For the case of a turbulent core phase (with either a laminar or turbulent annular layer) the implicit 
solution for/)¢ (Brauner 1991) is to be employed. 

Figures 9(a-c) demonstrate a parametric study on the predicted transition boundary from an 
annular to a slug pattern in various liquid-liquid systems. As indicated in figures 9(a-c), the effects 
of various parameters on this transition line in the studied ranges are rather mild: the tube diameter 
and density ratio have almost no effect, and oil viscosity has only a slight effect. This is 
understandable in view of [9a--¢] and [10a,b], where for a laminar core (as in highly viscous oils), 
the in situ hold-up and hence the resulting transitional conditions are practically independent of 
the core viscosity. This is consistent with experimental data on viscous core flows (Oliemans 1986; 
Brauner 1991). In this case, the transitional line [lla,b] reduces to ~ = U~/Ub, "" 1. 

Note that figures 9(a,b) are based on Aw/A¢ = 1 and 0re = 1. The sensitivity of the annular/slug 
(AN-SL) transition line to these parameters is demonstrated in figure 9(c). The line obtained with 
a¢ = 1, Dc/D --0.5 (Aw/A¢--3) corresponds practically to an alternative transition line predicted 
with a¢ --- 0.5, Aw/A¢ -- 1 (D¢/D -- x/2/2). Since at relatively high oil and water rates, entrainment 
of the less viscous annular layer may take place (a¢ < 1), a criterion of Aw/Ac > 1 with a¢ = 1 may 
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Figure 9. Effects of the hqmds' physzcal propertzes, the tube diameter and model parameters on the 
AN-SL transition boundary. 

compensate for ignoring entrainment. Clearly, the relevant criterion around Aw/Ac ~ 1 is to be 
determined by comparison with experimental data (see also figure 14). 

It is worth noting that the annular pattern is bounded, in fact, between two limits. While the 
above discussion relates to the collapse of the core phase in the case of a relatively thick (wavy) 
annular layer, the other limit relates to the break-up of the thin top-wall film due to the float-up 
tendency of the lighter core phase. In this case, the disruption of the annular configuration results 
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in a stratified pattern. This boundary is predicted via the analysis of the limit of existence of the 
stratified configuration (as described in section 2.1). 

2.3. Stratified-dispersed~stratified boundary 
Gas-liquid systems are known to stratify even for relatively low gas flow rates, due to the intense 

float-up of the bubbles and consequent accumulation of gas at the upper tube cross-section. When 
the density differential is reduced, as in liquid-liquid systems, buoyancy is moderated and the 
system tends to demonstrate a stratified-dispersed flow pattern, as sketched in figure 10. In order 
to develop a criterion for predicting whether the lighter phase, a, may form a continuous upper 
layer or remain above phase b as a swarm of drops, an initially very low Uas/U~ ratio (where stable 
stratification is predicted as in section 2.1) is considered. Clearly, under the condition of sufficiently 
low Uas, drops (or bubbles) of phase a are obtained. In this range, the small viscous and inertia 
forces are insufficient to cause coalescence or avoid float-up of the bubbles. Thus, drops of the 
lighter phase a agglomerate at the upper cross-section due to buoyancy (corresponding to Ap) and 
tend to stick together. However, the drops may maintain their shape (provided they are small 
enough), so that the surface tension forces overcome those due to buoyancy, the balance of which 
yields the critical diameter, dcr : 

(__~)3 I 6 a 1½ o n d c  r 4 . [12] =fn  (Pb--Pa)g; dcr= • g (pb - pa)  

Equation [12] implies that drops of larger diameters will merge together to form a continuous upper 
layer. 

For a given (Uas, Ubs) in the range of stable stratified flow, the stratified model is applied now, 
whereby the upper phase height, Ha = D - H, and its corresponding cross-sectional area, A a, are 
obtained. Consider the case where H a ~ de,, corresponding to relatively low Ua~. In this case the 
biggest drop which may occupy the available space Aa is still smaller than de,. Therefore, a swarm 
of bubbles smaller than d~r will be maintained within Ha, and a stratified-dispersed flow pattern 
is possible. On the other hand, for Ha >> dcr, corresponding to a greater upper phase flow rate, the 
available upper phase space allows the agglomeration of large drops, beyond the critical diameter, 
which will then merge to form an upper continuous stratified phase. 

In view of the above, a simple transition criterion from two continuous stratified layers towards 
a stratified-dispersed upper layer is proposed herein, by requiring that for given (Uas, Ubs) flow 
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rates, the available upper cross-sectional area, Aa, is smaller than the cross-sectional area of  a 
critical drop size: 

A , ( U , , ,  U b , ,  p,, Pb, P a , / ~ b )  ~< A c , ;  A= ,  = zcd--~-2= [13] 
4 

Figure 11 shows the possible development of  a dispersed upper layer as a subzone of  the stratified 
configuration. Clearly, the only practical relevance of  the S-D (stratified-dispersed) line is when 
it merges into the region where stable stratification is predicted. The shaded area represents the 
predicted zone of  the stratified-dispersed pattern as a subzone of  the stratified pattern. For 
generality, it is of  interest to discuss the effects of  the various physical properties and geometry 
on the S-D transition line, as detailed in figures 12(a-c). 

With reference to [12], as Ap increases, the critical diameter decreases, and thus a dispersed upper 
layer may result for a very low lighter phase flow rate. For example, in the extreme case of  
gas-liquid flow, [12] yields dcr = 0.6 cm and [13] for D = 5 cm requires an air/water flow ratio of  
~b < 0.03, which is out of the practical range of  interest. Therefore, stratified-dispersed air-water 
flow has not been reported for D = 5 cm. It is worth noting, however, that as the upper layer 
becomes dispersed [as for small diameters, see figure 12(c)], usually it has been identified as an 
intermittent pattern (or bubbly flow). Therefore, the S-D transition is actually part of  the observed 
stratified/intermittent transitional boundary. 

Reducing the density differential (as in liquid-liquid systems) or increasing the surface tension, 
see figure 12(a), yields a larger critical drop diameter, whereby the dispersed upper layer can be 
sustained at larger Aa (corresponding to larger U~,). This may result in an extended dispersed zone 
(S-D line becomes lower). Note that the entire zone of stable stratification is also reduced with 
a decreasing density difference, as discussed in reference to figures 4 and 5. 

The effect of  the viscosity ratio is shown in figure 12(b). Increasing the viscosity of  the upper 
layer affects larger A~ (for given flow rates and d¢,) and as long as A, >A¢r continuous stratified 
layers are maintained (S-D line moves upward). For sufficiently high/~a/#b, the S-D line may not 
intersect the stratified ZRC line. It is to be noted in view of figures 6 and 12(b) that while the S-D 
lines move upward with increasing upper layer viscosity, the upper bound for stratification (ZRC 
line) moves downward, hence the existence of  this stratified-dispersed subzone is less favourable 
in highly viscous oil systems. Similarly, as the tube diameter decreases, as in figure 12(c), the 
available space for the upper layer, A,, becomes smaller (at given flow rates) and as A~ < A¢r the 
stratified-dispersed pattern is more likely to appear according to the possible intersection with the 
corresponding ZRC (figure 7). 
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In the extreme case of equal densities, it is most likely that no stratification takes place and a 
dispersed flow pattern occupies the entire tube cross-section. The stratification may also disappear 
for a finite non-zero density differential, Apmm, which is sufficiently low to yield (by [12]) a d~ of 
the order of the tube diameter. For example, with reference to figure 12(c), Ap = 0.04 g/cm 3 (and 

= 45 dyne/cm) yields d~r = 2.65 cm and therefore no stratified flow is to be expected for tube 
diameters smaller than Dcr = 2.65 cm, although the density difference between the layers is finite 
and a range of stable stratification is predicted by stability analysis. Stated differently, for a given 
tube diameter the whole range of 0 < Ap < Ap .... is expected to yield a dispersed flow and 
effectively behaves as an equal-density or zero-gravity system (Brauner 1990). The non-dimensional 
criterion for defining an apparently "equal-density" (or "zero-gravity") system is d~r/D > 1, or in 
terms of the Eotv6s number, Z: 

6a 
Z 1> 1; Z = ApD'----'~" [14] 

The above discussion refers to the possibility of dispersed phase a in phase b for relatively low 
U~,. A similar reasoning can be adopted for the case of dispersed (heavier) phase b in phase a, when 
Ub, '~ U, ,  whereby a dispersed pattern of the heavier phase may appear at the conduit bottom. 
In any case the appearance of a stratified--dispersed pattern may also depend on the interaction 
of the fluids with the pipe walls (Hasson et al. 1970). 

2.4. Fully-dispersed pattern boundary 

As discussed above, a stratified-dispersed pattern is relevant only when [13] merges into the ZRC 
boundary. However, beyond the ZRC boundary various dispersed types of flow may exist. For 
instance, above and close to the upper ZRC branch, when Ub, is large compared to U,, (cp ,~ 1), 
relatively large oil bubbles (d > d~r) dispersed in water may be obtained. With increasing U.,, the 
oil bubbles merge to form large elongated oil bubbles which resemble slug flow. On the other hand, 
increasing U~ while maintaining low U~, the turbulent breakage forces tend to destroy large 
bubbles. According to Hinze's (1955) model, originally developed for liquid-liquid dispersion, the 
maximum dispersed phase diameter is related to the turbulent dissipation scale, la, by: 

/ o \] 2fU 3 [15a] 

and 

U=em=eas+ebs, f=O.O46|OOm| - ° 2 , [ \  e~= e~ . [15b] 
\ Vb / G,+Ub~' 

where the constant C~(e) may generally be related to the in situ hold-up and is to be determined 
by experiments [e.g. Hinze (1955) obtained C = 0.725 in a Couette flow field]. Utilizing [15b] in [15a] 
yields 

dm C2(8)We0m I Frm05 _oo8 - -  = R ~  , [16a] 
G 

where 

o Pb U2m DUm 
W e  m = Dp b U2m, Fr= = ApgD' R e i n  = Vb [16b] 

and with dcr as given in [12]. Obviously, as the maximum drop size, din, is smaller than the critical 
size, de,, the small drops maintain their identity and a fully-dispersed pattern may prevail. Thus, 
a fully-dispersed pattern is expected for dm/d=< 1 and $ a 1, whereas for $ ~ 1 (e a -~ 0.5) (large 
in situ hold-up) a slug pattern may still be more favourable, even for d=/dc, < 1, due to the dense 
bubble packing. Note that for large U,s and relatively low Ub, ,fully-dispersed phase b in continuous 
phase a, may be obtained (similar to the mist pattern in gas-liquid systems). 

The various types of dispersed flow have been identified in liquid-liquid systems (Russell et  al. 
1959; Charles et al. 1961; Hasson et al. 1970). However, the exact location of the transitional 
boundaries are not well-defined (as in gas-liquid systems), probably due to the low density 
differentials. More extensive experimental data is required for thorough interpretations. 
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3. L I Q U I D - L I Q U I D  FLOW PATTERN MAPS: 
COMPARISON WITH EXPERIMENTS 

The parametric study presented so far forms the basis for constructing complete flow pattern 
maps for two various two-fluid systems. Clearly, the physical concepts utilized in developing the 
transitional boundaries ought to be supported by experimental observations. However, the  
available experimental data on liquid-liquid flow patterns is rather limited. 

Figures 13 and 14(a,b) demonstrate comparisons of the predicted transitional boundaries with 
two horizontal oil-water systems: the first corresponds to #, = 18 cP, p, = 0.834 g/cm 3, D = 2.05 crn 
gb = #w = 0.894 cP (Russell et al. 1959); and the second corresponds to a waxy oil-water system 
with #, = 104 cP, p, = 0.995 g/cm 3, D = 20.3 cm. (Guevara et  al. 1988). Included in the figures are 
the upper ZRC branches obtained for various Ya/> 1 values. As noted earlier, ~, = I corresponds to 
relatively high oil rates, while for lower oil rates y~ > 1 is more suitable. Only the transitional data 
of stratified-dispersed and stratified-annular (which confine the stratified flow data) is indicated in 
figure 13. The data for a stratified pattern (not shown in the figure) is indeed confined by the com- 
bined boundaries formed by the two ZRC branches and the S-D transition line. The transitional 
stratified-dispersed data follows the predicted S-D boundary. Similarly, the data corresponding to 
the transition to annular pattern data is located in the proximity of the ZRC side branch, Ua > Ub. 
Note that the ZNS line for the oil-water system of figure 13 seems to be irrelevant to transition. 

Figure 14(a) includes specific data which relates to annular (viscous) core flow. The region where 
core flow has been steadily maintained (Guevara et  al. 1988) is indeed located in the predicted 
region for an annular pattern (confined between the AN-SL boundary and the upper ZRC branch 
with ~, ~ 1 to 1.1). As shown in figure 14(a), no data (of core flow conditions) falls across the 
AN-SL transition line. Note that for the particular physical system of figure 14(a), the S--D line 
does not share a common zone with the stratified region, thus no stratified--dispersed pattern is 
expected in this case. 

The upper ZRC boundary of figure 14(a) as well as the core flow data are reconstructed in figure 
14(b) in terms of the superficial oil velocity and percentage of water added, U ~ / ( U , ,  + Ubs ). Again 
all the annular viscous core flow data is practically above the ~ _~ 1.0 line, indicating that steady 
core flow is possible at very low water percentages as predicted by Moalem Maron et  al. (1990). 
Moreover, for sufficiently high oil rates, Ua~ > 200 cm/s, which exceed the ZRC side branch [figure 
14(a)], an annular viscous core pattern can be maintained almost independently of the water ratio. 
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Figure 13. Flow pattern map for an od-water system--companson wtth experiments (Russell et aL 1959). 
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On the other hand, at some lower oil rate, a minimum water addition is required as predicted by 
the upper ZRC branch. Core flow can be maintained up to a maximum water percentage, given 
by the AN-SL boundary, beyond which a transition to slug flow is predicted to take place. The 
intersection of the AN-SL line with the upper ZRC branch [point Az in figure 14(a)] defines the 
minimum theoretical oil rate for establishing annular core flow. 

The effects of the oil viscosity on the required water percentage for maintaining a steady core 
flow are described in figure 15 in comparison with reported experimental data on the transition 
from a stratified configuration to core flow (Oliemans 1986). Again, the prediction of the proposed 
analytical boundary as defined by the ZRC line with 7a = 1 to 1.1 is satisfactory. Both theory and 
experiment indicate that the required water addition for established core flow decreases as the oil 
viscosity increases. 

The general outcome in view of figures 13-15 seems to be that the transitions from stratified to 
non-stratified patterns are reasonably predicted by the reality of characteristics criteria, Thus, the 
stratified configuration may extend beyond the ZNS line, which is more appropriate for the 
transition to a wavy stratified pattern. 
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Of particular interest is the convergence of the general (liquid-liquid) formulation to the extreme 
of gas-liquid systems (p~/Pb >~ 1,/2a//L b ~ l). Figures 16(a-c) include three sets of data for air-water 
systems with D = 2 . 5 ,  5.1 and 9.53cm. Note first, that the upper ZRC branch (for 
U~ - UG < Ub -- Uw) is located beyond the range of the figure (at UG, < 1 cm/s). 

Figures 16(a-c) indicate consistently that in horizontal gas-liquid systems and in the range of 
UGs >> Uws (and UG/Uw >> 1) the ZNS line (with a turbulent water layer) and the ZRC side branch 
become closer, implying that the stratified/annular transition can be predicted by either stability 
or reahty of characteristics. On the other hand, in the range of comparable phases velocities, the 
ZNS and ZRC criteria move away from each other, and the data follows the ZNS boundary. This 
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is in contrast with oil-water liquid-liquid systems where the ZNS and ZRC lines converge along 
the upper ZRC branch, where Ub -- Uw ~> Ua - Uo,l, and diverge for Ua I> Ub. The conditions under 
which the stability and well-posedness are practically identical have been widely discussed by the 
authors elsewhere (Brauner & Moalem Maron 1992). 

Clearly, in the range where the ZNS and the ZRC boundaries are practically identical, either 
can be used to predict the stratified/non-stratified flow pattern transition. In the range where the 
ZNS and ZRC lines diverge, a "buffer" region is formed between them which is, in principle, 
characterized by the existence of interfacial disturbances, and as such bears a real potential for flow 
pattern transition. Whether these disturbances trigger the departure from a stratified configuration 
(due to blockage, for instance) depends on the relative thicknesses of the layers; for if H/D " 0.5 
to l, it is likely that the evolution of the interfacial disturbances will result in tube blockage. Indeed, 
this is the case in gas-liquid (air-water) systems, as indicated in figures 16(a-c), where the "buffer" 
region is mostly above/~ = 0.5 and thus corresponds to relatively thick water layers. Consequently, 
the departure from a stratified pattern (to slug flow) in air-water systems occurs along the ZNS 
boundary (Brauner & Moalem Maron 1991). 

On the other hand, in the liquid-liquid systems of figures 13 and 14(a,b), the lines H/D = 0.5 
(not marked in the figures) fall above the ZRC boundary, indicating that the "buffer" regions in 
these cases correspond to HID ~ 1, whereby a wavy stratified configuration can persist and the 
departure from stratified flow is delayed and predicted according to the ZRC boundaries. 

4. CONCLUSIONS 

The tools for constructing general two-fluid flow pattern maps in horizontal flows are proposed. 
The various flow patterns relevant to liquid-liquid systems have been identified and discussed for 
different viscosity and density ratios. It is shown that subzones of stratified-dispersed patterns may 
appear in the region where stable stratification is expected in view of stability considerations. By 
reducing the density differential, as encountered in liquid-liquid systems, the regions of dispersed 
patterns extend on account of the range of continuous stratified layers. 

The range of stable stratification is defined here in view of the lower bound obtained from 
stability analysis (ZNS) and the upper bound derived from conditions for reality of characteristics 
(ZRC). Previous studies concerned with gas-liquid flows, relate mainly to instability criteria (or 
the simplified Bernoulli criterion) in predicting the stratified/non-stratified transition. Here, 
however, the departure from a stratified configuration to other bounding patterns is shown to be 
associated with a "buffer" zone formed between the ZNS and ZRC boundaries. 

Finally, as the present study represents a first attempt to model liquid-liquid flow pattern 
transitions, while the available data is limited, wide experimental data for various two-fluid pairs 
is stdl required in order to further validate and extend the proposed models. An experimental phase 
is presently underway. 
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